Math 254A Lecture 27 Notes

Daniel Raban

May 28, 2021

Equality of Entropy Rate and the Exponent Function 1

Proving that the entropy rate equals the exponent function for lattice 1.1 models

In our current setting, we have a shift-invariant measure $\mu \in P^T(A^{\mathbb{Z}^d})$, and

$$s(\mu) = \inf_{W, U \ni \mu_W} \lim_{B \uparrow \mathbb{Z}^d} \frac{1}{|B|} \log |\Omega_B(U)|,$$

where $\Omega_B(U) = \{x \in A^B : P_x^W \in U\}.$ The Shannon entropy is

$$H(\mu_F) = -\sum_{y \in A^F} \mu_F(y) \log \mu_F(y),$$

and the entropy rate is

$$h(\mu) = \lim_{B} \frac{1}{|B|} H(\mu_B) = \inf_{W} \frac{1}{|W|} H(\mu_W)$$

Theorem 1.1.

$$s(\mu) = h(\mu).$$

To prove this, we will use two tools from last lecture:

Lemma 1.1. If $A = B \sqcup C$, $p \in P(A)$, and $p(C) \le \varepsilon \le 1/2$, then

$$H(p) \le H(\varepsilon, 1 - \varepsilon) + (1 - \varepsilon) \log |B| + \varepsilon \log |A|.$$

Last time, we assumed $|B| \leq |C|$ in the above and got $\log |C|$ instead of $\log |A|$; this version is more useful. We also have the following corollary of Shearer's inequality:

Lemma 1.2. If $W, B \subseteq \mathbb{Z}^d$ are finite and $\mu \in P(A^B)$, then

$$H(\mu) \leq \frac{1}{|W|} \sum_{v:v+W \subseteq B} H(\mu_{v+W}) + O\left(\frac{\log|A| \cdot |B| \cdot \operatorname{diam}(W)}{\operatorname{min-side-length}(B)}\right).$$

Now let's prove the theorem:

Proof. We will prove the inequalities \geq and \leq separately.

 (\geq) : Denote $h = h(\mu)$. We want to show for any W, μ_W , we have

$$\frac{1}{|B|} \log |\{x \in A^B : P_x^W \in U\}| \ge h - o(1)$$

as $B \uparrow \mathbb{Z}^d$. Suppose we knew that

$$\mu_B(\{x \in A^B : P_x^W \in U\}) = 1 - o(1)$$

as $B \uparrow \mathbb{Z}^d$. Then, by the first lemma, we get

$$\begin{aligned} \frac{1}{|B|}H(\mu_B) &\leq \frac{1}{|B|}H(\varepsilon(B), 1 - \varepsilon(B)) + \frac{1 - \varepsilon(B)}{|B|}\log|\Omega_B(W, U)| + \frac{\varepsilon(B)}{|B|}\log|A^B| \\ &\leq \frac{\log 2}{|B|} + \frac{1}{|B|}\log|\Omega_B(W, U)| + \varepsilon(B)\log|A| \\ &= \frac{1}{|B|}\log|\Omega_B(W, U)| + o(1) \end{aligned}$$

as $B \uparrow \mathbb{Z}^d$. So $s(\mu) \ge h(\mu)$ if we have this property.

In general, this property does not hold, so we need a replacement for it. To do this, we may restrict attention to $B_n = \{0, \ldots, n^2 - 1\}^d$. Let \mathcal{Q}_n be the natural partition of B_n into boxed of side length n.

Let $\nu_n = X_{Q \in Q_n} \mu_Q$. Observe that $H(\nu_n) = \sum_W H(\mu_Q)$, so

$$\frac{1}{n^{2d}}H(\nu_n) = \frac{1}{n^d}H(\mu_{\{0,\dots,n-1\}^d}) \to h(\mu)$$

as $n \to \infty$. Also, if $x \in A^{B_n}$,

$$P_x^W = \frac{1}{|\{v: v+W \subseteq B_n\}|} \sum_{v+W \subseteq B_n} \delta_{x_{v+W}}$$
$$= \frac{1}{|\{v: v+W \subseteq B_n\}|} \sum_{Q \in \mathcal{Q}_n} \sum_{v+W \subseteq Q} \delta_{x_{v+W}} + \text{boundary terms}$$

If we do the same analysis as we did before with this type of partition, we get

$$= \frac{1}{n^d} \sum_{Q \in \mathcal{Q}_n} P^W_{x_Q} + o(1).$$

The $P_{x_Q}^W$ are independent if $x \sim \nu_n$. The average of $P_{x_Q}^W(a)$ (with $a \in A^W$) over $x_Q \sim \mu_W$ is $\mu_W(a)$. So by the weak law of large numbers, $P_x^W \in U$ with high probability if $x \sim \nu_n$ and n is large enough. So the property we assumed works if we replace μ_B by ν_n . Now complete the argument as before.

 (\leq) : We want to show that if $\varepsilon > 0$, W is large enough, and $U \ni \mu_W$ is small enough, then

$$\frac{1}{|B|}\log|\Omega_B(W,U)| \le h + \varepsilon + o(1)$$

as $B \uparrow \mathbb{Z}^d$. To estimate the left hand side, let ν_B be the uniform probability distribution on $\Omega_B(W, U)$, so the left hand side equals $\frac{1}{|B|}$. So the second lemma (the corollary of Shearer's inequality) tells us that

$$\frac{1}{|B|}H(\nu_B) \le \frac{1}{|B|} \sum_{v+v+W \subseteq B} H(\nu_{v+W}) + \underbrace{O\left(\frac{\log|A| \cdot \operatorname{diam}(W)}{\min\operatorname{-side-length}(B)}\right)}_{=o_B(1)}.$$

What can we say about the family ν_{v+W} , where $v+W \subseteq B$? Observe that

$$\begin{aligned} \frac{1}{|\{v:v+W\subseteq B\}|} \sum_{v+W\subseteq B} \nu_{v+W} &= \frac{1}{|\{v:v+W\subseteq B\}|} \sum_{v+W\subseteq B} \int \delta_{x_{v+W}} \, d\nu_B(x) \\ &= \int \frac{1}{|\{v:v+W\subseteq B\}|} \sum_{v+W\subseteq B} \delta_{x_{v+W}} \, d\nu_B(x) \\ &= \int P_x^W \, d\nu_B(x) \\ &=: \widehat{\mu} \in U. \end{aligned}$$

Since Shannon entropy is concave and continuous, we get

$$\frac{1}{|\{v:v+W\subseteq B\}|}\sum_{v+W\subseteq B}H(\nu_{v+W})\leq H(\widehat{\mu})\leq H(\mu_W)+\varepsilon$$

if we choose U small enough.

If we put it all together, we get

$$\frac{1}{|B|}\log|\Omega_B(W,U)| = \frac{1}{|B|}H(\nu_B) \le (1+o_B(1))\frac{1}{|W|}(H(\mu_W)+\varepsilon) + o_B(1).$$

So for every ε and W, there is a U such that

$$\lim_{B} \frac{1}{|B|} \log |\Omega_B(W, U)| \le \frac{1}{|W|} H(\mu_W) + \varepsilon.$$

So, if we choose W large enough depending on ε , we get that the left hand side is $\leq h + 2\varepsilon$, Since ε is arbitrary, we get $s(\mu) \leq h(\mu)$.

1.2 A digression concerning ergodic measures

If $\mu \in P^T(A^{\mathbb{Z}^d})$, B is a large box, and $x \in A^{\mathbb{Z}^d}$, then

$$P_x^W = \frac{1+o(1)}{|B|} \sum_{v+W \subseteq B} \delta_{x_{v+W}}$$

= $(1+o(1)) \cdot \frac{1}{|B|} \sum_{v \in B} \delta_{x_{v+W}}$

When do we have $P_{x_B}^W \to \mu_W$ in weak^{*} as $B \uparrow \mathbb{Z}^d$ when $x \sim \mu$? Equivalently, we test against $\psi : A^{\mathbb{Z}^d} \to \mathbb{R}$ dependent only on coordinates in W: When do we have

$$\mu\left(\left\{x \in A^{\mathbb{Z}^d} : \left|\frac{1}{|B|} \sum_{v \in B} \psi(x_{v+W}) - \int \psi \, d\mu\right| < \varepsilon\right\}\right) \to 1$$

as $B \uparrow \mathbb{Z}^d$? Write $\frac{1}{|B|} \sum_{v \in B} \psi(x_{v+W}) = \frac{1}{|B|} \sum_{v \in B} \psi(T^v x)$. Then we really want

$$\frac{1}{|B|} \sum_{v \in B} \psi \circ T^v \to \int \psi \, d\mu$$

in probability for all ψ .

Theorem 1.2 (Mean Ergodic Theorem). Let (X, μ) be a probability space (e.g. above $X = A^{\mathbb{Z}^d}$). Let $(T^n)_{n \in \mathbb{Z}^d}$ be an action on X that preserves μ (e.g. above this equals translation). The following are equivalent:

1. For all $\psi \in L^1(\mu)$, we have

$$\frac{1}{|B|} \sum_{v \in B} \psi \circ T^v \to \int \psi \, d\mu$$

in L^1 as $B \uparrow \mathbb{Z}^d$.

2. The system (X, μ, T) is **ergodic**: there is no measurable partition $X = Y \sqcup Z$ such that $T^{v}(Y) = Y$ and $T^{v}(Z) = Z$ for all v and $\mu(Y), \mu(Z) > 0$.