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1 Equality of Entropy Rate and the Exponent Function

1.1 Proving that the entropy rate equals the exponent function for lattice
models

In our current setting, we have a shift-invariant measure µ ∈ P T (AZd
), and

s(µ) = inf
W,U3µW

lim
B↑Zd

1

|B|
log |ΩB(U)|,

where ΩB(U) = {x ∈ AB : PWx ∈ U}.
The Shannon entropy is

H(µF ) = −
∑
y∈AF

µF (y) logµF (y),

and the entropy rate is

h(µ) = lim
B

1

|B|
H(µB) = inf

W

1

|W |
H(µW )

Theorem 1.1.
s(µ) = h(µ).

To prove this, we will use two tools from last lecture:

Lemma 1.1. If A = B t C, p ∈ P (A), and p(C) ≤ ε ≤ 1/2, then

H(p) ≤ H(ε, 1− ε) + (1− ε) log |B|+ ε log |A|.

Last time, we assumed |B| ≤ |C| in the above and got log |C| instead of log |A|; this
version is more useful. We also have the following corollary of Shearer’s inequality:
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Lemma 1.2. If W,B ⊆ Zd are finite and µ ∈ P (AB), then

H(µ) ≤ 1

|W |
∑

v:v+W⊆B
H(µv+W ) +O

(
log |A| · |B| · diam(W )

min-side-length(B)

)
.

Now let’s prove the theorem:

Proof. We will prove the inequalities ≥ and ≤ separately.
(≥): Denote h = h(µ). We want to show for any W , µW , we have

1

|B|
log |{x ∈ AB : PWx ∈ U}| ≥ h− o(1)

as B ↑ Zd. Suppose we knew that

µB({x ∈ AB : PWx ∈ U}) = 1− o(1)

as B ↑ Zd. Then, by the first lemma, we get

1

|B|
H(µB) ≤ 1

|B|
H(ε(B), 1− ε(B)) +

1− ε(B)

|B|
log |ΩB(W,U)|+ ε(B)

|B|
log |AB|

≤ log 2

|B|
+

1

|B|
log |ΩB(W,U)|+ ε(B) log |A|

=
1

|B|
log |ΩB(W,U)|+ o(1)

as B ↑ Zd. So s(µ) ≥ h(µ) if we have this property.
In general, this property does not hold, so we need a replacement for it. To do this,

we may restrict attention to Bn = {0, . . . , n2 − 1}d. Let Qn be the natural partition of Bn
into boxed of side length n.
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Let νn =×Q∈Qn
µQ. Observe that H(νn) =

∑
W H(µQ), so

1

n2d
H(νn) =

1

nd
H(µ{0,...,n−1}d)→ h(µ)

as n→∞. Also, if x ∈ ABn ,

PWx =
1

|{v : v +W ⊆ Bn}|
∑

v+W⊆Bn

δxv+W

=
1

|{v : v +W ⊆ Bn}|
∑
Q∈Qn

∑
v+W⊆Q

δxv+W + boundary terms

If we do the same analysis as we did before with this type of partition, we get

=
1

nd

∑
Q∈Qn

PWxQ + o(1).

The PWxQ are independent if x ∼ νn. The average of PWxQ(a) (with a ∈ AW ) over xQ ∼ µW

is µW (a). So by the weak law of large numbers, PWx ∈ U with high probability if x ∼ νn
and n is large enough. So the property we assumed works if we replace µB by νn. Now
complete the argument as before.

(≤): We want to show that if ε > 0, W is large enough, and U 3 µW is small enough,
then

1

|B|
log |ΩB(W,U)| ≤ h+ ε+ o(1)

as B ↑ Zd. To estimate the left hand side, let νB be the uniform probability distribution on
ΩB(W,U), so the left hand side equals 1

|B| . So the second lemma (the corollary of Shearer’s

inequality) tells us that

1

|B|
H(νB) ≤ 1

|B|
∑

v+v+W⊆B
H(νv+W ) +O

(
log |A| · diam(W )

min-side-length(B)

)
︸ ︷︷ ︸

=oB(1)

.

What can we say about the family νv+W , where v +W ⊆ B? Observe that

1

|{v : v +W ⊆ B}|
∑

v+W⊆B
νv+W =

1

|{v : v +W ⊆ B}|
∑

v+W⊆B

∫
δxv+W dνB(x)

=

∫
1

|{v : v +W ⊆ B}|
∑

v+W⊆B
δxv+W dνB(x)

=

∫
PWx dνB(x)

=: µ̂ ∈ U.
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Since Shannon entropy is concave and continuous, we get

1

|{v : v +W ⊆ B}|
∑

v+W⊆B
H(νv+W ) ≤ H(µ̂) ≤ H(µW ) + ε

if we choose U small enough.
If we put it all together, we get

1

|B|
log |ΩB(W,U)| = 1

|B|
H(νB) ≤ (1 + oB(1))

1

|W |
(H(µW ) + ε) + oB(1).

So for every ε and W , there is a U such that

lim
B

1

|B|
log |ΩB(W,U)| ≤ 1

|W |
H(µW ) + ε.

So, if we choose W large enough depending on ε, we get that the left hand side is ≤ h+2ε,
Since ε is arbitrary, we get s(µ) ≤ h(µ).

1.2 A digression concerning ergodic measures

If µ ∈ P T (AZd
), B is a large box, and x ∈ AZd

, then

PWx =
1 + o(1)

|B|
∑

v+W⊆B
δxv+W

= (1 + o(1)) · 1

|B|
∑
v∈B

δxv+W .

When do we have PWxB → µW in weak* as B ↑ Zd when x ∼ µ? Equivalently, we test

against ψ : AZd → R dependent only on coordinates in W : When do we have

µ

({
x ∈ AZd

:

∣∣∣∣∣ 1

|B|
∑
v∈B

ψ(xv+W )−
∫
ψ dµ

∣∣∣∣∣ < ε

})
→ 1

as B ↑ Zd? Write 1
|B|
∑

v∈B ψ(xv+W ) = 1
|B|
∑

v∈B ψ(T vx). Then we really want

1

|B|
∑
v∈B

ψ ◦ T v →
∫
ψ dµ

in probability for all ψ.

Theorem 1.2 (Mean Ergodic Theorem). Let (X,µ) be a probability space (e.g. above

X = AZd
). Let (Tn)n∈Zd be an action on X that preserves µ (e.g. above this equals

translation). The following are equivalent:
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1. For all ψ ∈ L1(µ), we have

1

|B|
∑
v∈B

ψ ◦ T v →
∫
ψ dµ

in L1 as B ↑ Zd.

2. The system (X,µ, T ) is ergodic: there is no measurable partition X = Y t Z such
that T v(Y ) = Y and T v(Z) = Z for all v and µ(Y ), µ(Z) > 0.
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